Synthesis and X-Ray Crystal Structure of an Arylchromium(vi) Derivative (Bu^tN)₂Cr(2,4,6-Me₃C₆H₂)₂

Michael B. Hursthouse,^b Majid Motevalli,^b Alice C. Sullivan,^a and Geoffrey Wilkinson^a

^a Chemistry Department, Imperial College, London SW7 2AY, U.K.

^b Chemistry Department, Queen Mary College, London E1 4NS, U.K.

The mesityl compound $(Bu^tN)_2Cr(2,4,6-Me_3C_6H_2)_2$ was prepared by action of the Grignard reagent on $(Bu^tN)_2Cr(OSiMe_3)_2$ and the structure determined by X-ray crystallography.

Among the chromium group transition metals relatively few σ -organo derivatives are known for Mo^{VI} and W^{VI} including WMe₆,¹ W(CH₂C₆H₄CH₂- σ)₃,² and compounds also having imido or oxo groups present, notably MoO₂mes₂ (mes = mesityl),³ WO(CH₂CMe₃)₄,⁴ and [(Bu^tN)₂MMe₂]₂, M = Mo,⁵ or W.⁶ There appears to be only one organochromium(v1) complex, namely [(η^{5} -C₅H₅)₂Cr₂(NPh)₄],⁷ but no σ -organo derivatives.

We now report the synthesis from $(Bu^tN)_2Cr(OSiMe_3)_2^8$ of the first examples of σ -organochromium(v1) compounds to be isolated, namely the imido arylchromium(v1) derivatives $(Bu^tN)_2Crmes_2$, m.p. 146 °C, (1) and $(Bu^tN)_2Cr(2,6-Me_2C_6H_3)_2$, m.p. 106 °C, (2), by reaction (1).

The deep red air stable compounds are formed in >60% yield. They are very soluble and stable in hydrocarbons or ethers but slowly decompose in halogenated solvents. X-Ray

 $(Bu^tN)_{2}Cr(OSiMe_{3})_{2} + 2RMgBr \xrightarrow{Hexane}_{Room \ temp.} (Bu^tN)_{2}CrR_{2} + '2Mg(OSiMe_{3})Br' \quad (1)$ (1) R = mes (2) R = 2,6-xylyl

quality crystals of (1) were obtained from hexane solutions and crystalline (2) from hexamethyldisiloxane solutions at -21 °C. The presence of the *o*-methyl groups on the phenyl rings undoubtedly contributes to the air and thermal stability and it is noteworthy that no analogous compound could be isolated when (Bu^tN)₂Cr(OSiMe₃)₂ was treated with *o*-tolylor phenyl-magnesium bromide or as previously reported⁶ when diphenylzinc was used. In the latter case reductive elimination of both biphenyl and t-butylphenylamine was observed.

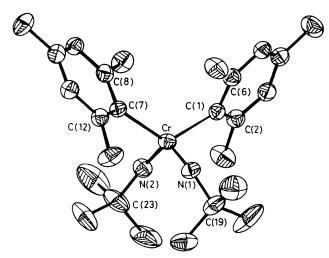


Figure 1. The molecular structure of $(Bu^{t}N)_{2}Crmes_{2}$ (1). Selected bond lengths (Å) and angles (°) are: Cr-N(1) 1.623(5), Cr-N(2) 1.622(5), Cr-C(1) 2.019(6), Cr-C(7) 2.029(6), N(1)-C(19) 1.453(6), N(2)-C(23) 1.445(6); N(1)-Cr-N(2) 114.7(3), C(1)-Cr-C(7) 121.3(2), N-Cr-C 100.9(3)-110.0(2), Cr-N(1)-C(19) 159.8(3), Cr-N(2)-C(23) 159.4(3), Cr-C(1)-C(2) 127.9(4), Cr-C(1)-C(6) 115.1(4), Cr-C(7)-C(8) 115.9(4), Cr-C(7)-C(12) 127.2(4).

X-Ray diffraction study showed (1) to be monomeric with distorted tetrahedral geometry at the chromium atom (Figure 1).† The nature of this distortion is interesting in that the angle

† Crystal data for (1): C₂₆H₄₀N₂Cr, M = 432.61, monoclinic, a = 9.145(2), b = 18.893(3), c = 15.226(4) Å, $\beta = 91.49(2)^\circ$, U = 2629.8 Å³, space group $P2_1/n$, Z = 4, $D_c = 1.09$ g cm⁻³, λ (Mo- K_{α}) = 0.71069 Å, $\mu = 4.36$ cm⁻¹. Data recorded using a CAD4 diffractometer in $\omega/2\theta$ scan mode; corrected for absorption empirically 5189 data measured, 4620 unique, 2841 observed [$I > 1.5\sigma(I)$]. Structure solved via heavy atom method, refined by least squares with hydrogens isotropic, non-hydrogens anisotropic, to R, $R_w = 0.053$, 0.044 respectively for 422 parameters. Atomic co-ordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors, Issue No. 1, 1986.

between the two Cr=N-Bu^t bonds is smaller than that between the two Cr-C bonds. However, both are greater than the tetrahedral angle. The bonding of the mesityl groups is also unsymmetrical, with Cr-C-C angles at the bonded carbon of *ca.* 127° and 115°. These distortions contrast strongly with those found in the related molecules O_2Mmes_2 , M = Re, Os, 9in which the O=M=O angles are greater than the C-M-C angles. The difference is most probably due to steric effects introduced by the Bu^t groups on nitrogen in the present complex, but in the Re and Os species, interesting electronic effects are also present.

Analogous aryl derivatives of Mo^{VI} , $(Bu^tN)_2Momes_2$, $(Bu^tN)_2Mo(2,6-Me_2C_6H_3)_2$, $(Bu^tN)_2Mo(o-tolyl)_2$, and of W^{VI} , $(Bu^tN)_2Wmes_2$ have also been prepared, and the chemistry of this novel group of complexes is being studied. We thank the S.E.R.C. for support.

Received, 13th June 1986; Com. 809

References

- 1 A. J. Shortland and G. Wilkinson, J. Chem. Soc., Dalton Trans., 1973, 872.
- 2 M. F. Lappert, C. L. Raston, B. W. Skelton, and A. H. White, J. Chem. Soc., Chem. Commun., 1981, 485; M. F. Lappert, C. L. Raston, B. W. Skelton, G. L. Rowbottom, and A. H. White, J. Chem. Soc., Dalton Trans., 1984, 883.
- 3 B. Heyn and R. Hoffman, Z. Chem., 1976, 16, 195.
- J. R. M. Kress, M. J. Russell, M. G. Wesolek, and J. A. Osborn, J. Chem. Soc., Chem. Commun., 1980, 431; cf. also I. Feinstein-Jaffe, J. C. Dewan, and R. R. Schrock, Organometallics, 1985, 4, 1189.
 S. W. A. Durest and P. Hurlow, J. Am. Chem. Soc. 1980, 102
- 5 W. A. Nugent and R. L. Harlow, J. Am. Chem. Soc., 1980, 102, 1759.
- 6 D. L. Thorn, W. A. Nugent, and R. L. Harlow, J. Am. Chem. Soc., 1981, 103, 357.
- 7 N. Wiberg, H. W. Haring, and H. Schubert, Z. Naturforsch., Teil. B, 1978, 33, 1365.
- 8 W. A. Nugent and R. L. Harlow, Inorg. Chem., 1980, 19, 777.
- 9 P. Stavropoulos, P. G. Edwards, T. Behling, G. Wilkinson, M. Motevalli, and M. B. Hursthouse, J. Chem. Soc., Dalton Trans., in the press.